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Abstract—The Internet of Things is an ideal world in which all
computing devices from all over the world connect and exchange
data through the Internet. This new scenario demands context-
aware systems to evolve with new characteristics; thus, brings
new challenges for system developers in system development.
While addressing these challenges, this paper presents a system
design approach based on a stack of 16 services specialized for
context-aware systems. The approach enables system developers
to focus more on services than hardware and software compo-
nents. The case study of a smart irrigation context-aware system,
also presented in this paper, is an example of using this design
approach in practice.

Index Terms—IoT, Stack of Services, Context-Aware System,
System Design, Smart Irrigation

I. INTRODUCTION

The earlier 21st century has witnessed a significant num-
ber of Internet-of-Things contributions in both the public
and private sectors. The Internet of Things (IoT) is defined
as a scenario in which "people and things are connected
anytime, anyplace, with anything and anyone, ideally using
any path/network and any services” [1]. This term was first
coined in 1999 by Kevin Ashton; however, it has been widely
adopted due to the exponential growth of computing devices
and networking technologies in the past decades. The ideal
world of the IoT has become more and more realistic, with a
foreseen picture of billions of internet-connected computing
devices to connect through many reliable and high-speed
internet connection [2], [3].

As a consequence, the IoT demands information systems
evolving with new characteristics to adapt to the new scenario.
In the scope of our research, this paper focuses on the context-
aware system (CAS), a kind of information system that reacts
adequately based on context. A typical CAS is composed
of three modules: (1) a module to monitor the environment
such as a wireless sensor network (WSN); (2) a module to
process, analyze, and stock data; and (3) an actionable module.
While building a CAS in the IoT, system developers must

consider three new characteristics. First, a CAS in the IoT
can connect to the Internet and exchange data with external
resources. Second, a CAS in the IoT can work in a highly
distributed environment. That means the system is divided into
several parts located in different local networks. These parts
are reassembled logically through the Internet. Third, a CAS
can be upgraded frequently with new hardware and software
components. This characteristic relies on the fact that the IoT
market by hardware and software grows quite fast.

While considering the above characteristics, this paper pro-
poses a new design approach based on a stack of 16 services
specialized for CASs. Note that the proposal is developed
from the thesis of Quang-Duy NGUYEN [4]. It allows system
developers to focus on services instead of hardware and
software components. The idea is to view a CAS as a set of
services of which each service is "a logical representation of a
set of activities that have specified outcomes, is self-contained
and is a black box to consumers of the services" [5]. Note that
a consumer can be a device, a person, or another service. One
service can access the Internet and connect with other services.
This design approach has three advantages according to the
three new characteristics of CASs. First, it proposes services
that allow a CAS to exchange data with external resources.
Second, each service is self-contained and independent: it can
work with the other services from a distance through the
Internet. Third, the design relies on services, and hardware
and software components are replaceable.

The rest of this paper is organized as follows. Section II
presents the concept of the CAS. Next, Section III focuses
on the main contribution of this paper: the stack of services
for context-aware systems (SS-CAS) and the principles of the
design approach. The case study in Section IV is an example
of how to use the SS-CAS. Section V compares this design
approach with other design approaches. Finally, Chapter VI
is a brief conclusion, to summarize the contents of this paper
and to open a discussion.

978-1-6654-0435-8/21/$31.00 ©2021 European Union

https://orcid.org/0000-0002-3517-0945
https://orcid.org/0000-0002-3076-5499
https://orcid.org/0000-0002-7011-4535


II. CONTEXT-AWARE SYSTEM

A CAS “uses context to provide relevant information and
services to users, where the relevancy depends on the users’
task” [6]. Of which, context is the core of a CAS. It refers
to as "a set of entities characterized by their state, plus all
information that can help to derive any state changes of these
entities" [7]. In this definition, a state is a quality property
that summarizes some information about one entity [8]. The
entities and their states are only meaningful in the application
which uses them. For example, "outdoor soil moisture" is an
entity of an irrigation system, but has no meaning in smart
home system. A CAS contains one low-level context and one
high-level context. The low-level context is a set of quantitative
data; that is to say, it can be a number or any numeric data
type. The high-level context is an enrichment of the low-level
context with qualitative data. This type of data synthesizes a
situation and enables humans to understand a situation to ease
the decision quickly. A computing device views a situation as
the state of an entity. The qualitative data are more informative
but support only logical processing (true, false, comparison).

A CAS is composed of many hardware and software
components. They collaborate to do activities and accomplish
tasks of the system. Based on the difference between these
activities’ context, it is possible to group them into four phases:
acquisition, modeling, analysis, and exploitation.

Figure 1 illustrates the life cycle of a CAS, in which the pink
box represents the scope of the CAS. Note that the actuator
device and the WSN are also parts of the CAS. The actuator
device works in the exploitation phase, and the WSN works in
the acquisition phase. An external system can be a computing
device or any system outside the scope of the CAS. When
the CAS receives data from an external system, the external
system is an external data source. The exchange between the
phases in the CAS could be data, low-level context, or high-
level context. The CAS receives measured data from WSN
or data from external data sources. The CAS can control
actuator devices to act on the environment. Humans can
retrieve the information provided by the CAS through their
users’ computing devices. Also, the CAS can send data to
external systems. The description of the four phases is as
follows.
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phase
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phase
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Fig. 1. Life cycle of a context-aware system

• Acquisition phase focuses on how CASs retrieve and
process measured data from sensor devices or data from
external data sources. This paper defines data from the
sources located inside a CAS, such as measured data
from sensor devices, as internal data. The sources of
internal data are also called internal data sources. External
data are data from external data sources. Normally, these
data are raw: they contain some errors or cannot be
used directly. They must be processed to become clean
data that the other software components can use. For
example, data sent from a sensor device have two parts:
the most significant byte (MSB) and the least significant
byte (LSB) of an integer number. These two parts of data
should be combined to produce the integer number. While
the MSB and LSB are raw data, the integer number is
clean data.

• Modeling phase focuses on how to model and organize
clean data into a CAS. A CAS must equip with a data
model and data storage in advance. The input of this
phase is clean data from the acquisition phase. Note that a
CAS should store all of the data; however, not all of them
need to be represented in the model. The data able to be
represented are part of the low-level context. In CASs,
data can be heterogeneous: data from different sources,
for different applications, and have different formats. For
example, the data format could be text, portable document
format (PDF), image, or video. The data model and data
storage should be able to deal with the heterogeneity of
data. Moreover, this phase should also provide a data
extraction activity for some cases, such as extracting
numerical data from a PDF document. The output of this
phase is the low-level context.

• Analysis phase focuses on how to enrich the low-level
context to provide the high-level context. The input of
this phase is the low-level context from the modeling
phase. This phase imitates the human reasoning process:
it retrieves the low-level context and reasons them to
deduct the high-level context. The high-level context is
the material for further decisions. The output of this phase
is the high-level context.

• Exploitation phase focuses on how the system uses high-
level context from the analysis phase to run applications.
Three basic types of applications are: (1) providing infor-
mation to users, (2) sending data to other systems, and
(3) making actions. Another feature is the capability that
a CAS reconfigures at run-time. This feature enables the
system to become adaptive [9].

III. SYSTEM DESIGN APPROACH BASED ON THE STACK
OF SERVICES FOR CONTEXT-AWARE SYSTEMS

This section describes the new system design approach
that supports developing CASs regarding new conditions of
the IoT. The first subsection focuses on the SS-CAS, which
is the core material of the system design approach. The
second subsection presents the principles of the system design
approach.



A. Stack of Services for Context-Aware Systems

The SS-CAS is an ordered list of 16 services of CASs. The
research team selects these services based on self-experiences
and from a study of many available CASs in agriculture [4].
One criterion to choose a service is that it must contribute to
the life-cycle of the CAS.

Figure 2 illustrates the SS-CAS. The four rounded rectangle
blocks, from bottom to top in the vertical order, correspond
to the four phases of the life cycle of CASs, as presented
in Figure 1. Each rounded rectangle block contains several
services. In a rounded rectangle block, one service Y is on
top of a service X means that a new session of the service Y
starts when the session of the service X ends and the service
Y requires data from the service X. In other words, the service
X has the order of execution before the order of execution of
the service Y. In each rounded rectangle block, there exist
multiple workflows to move between the services inside a
block, in one direction from bottom to top. A workflow always
starts with the bottom service and moves to the higher service
until it reaches the top service and terminates the phase.
For example, in the acquisition block, the order of execution
from the source selection service, crossing the internal data
collection service, towards the cleaning service is a workflow.
The description of the 16 services is as follows.
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Fig. 2. Stack of services for context-aware systems

[1.1] Source selection: The service to register the configu-
ration data of data sources at run-time. By using configuration
data, another service can retrieve data from the data sources.
The virtual sensor description of the Global Sensor Network
middleware (GSN) is an example of configuration data [10].

[1.2] Internal data collection: The service to collect data
from internal data sources. For example, measured data are
collected from a sensor device. This service works differ-

ently depending on the communication models: pull model
(request/response) and push model (publish/subscribe). In the
pull model, the procedure of sending requests and waiting
for measured data arrives is repeated. In the push model, the
service subscribes to a source only one time, but it receives
new measured data as soon as they are generated.

[1.3] External data collection: The service to collect data
from external data sources. For example, a national weather
station that sends forecast data is an external data source.
The working procedure of this service also depends on the
communication model of pull or push. Different from the
internal data collection phase, the external data collection
always needs the agreement of the external systems for the
data. Moreover, the exchange message between systems must
be encapsulated under some networking protocol standards.

[1.4] Cleaning: The service to guarantee the correctness of
the input data. Three possible actions in the data treatment
are data consistency enforcement, filtering, and aggregation.
Data consistency enforcement replaces error data with correct
data. It is also named numerical data consistency enforcement
[11]. Filtering selects relevant data and removes irrelevant
one. Aggregation uses basic operators such as addition and
subtraction, to produce more accurate data.

[2.1] Format transformation: The service that the format
of the data is transformed into another format. For example, a
text is extracted from a PDF document and transformed into
an XML file.

[2.2] Annotation: The service to interpret data using a
specific schema. The data after this interpretation becomes
a part of the low-level context. Two possible actions in the
annotation service are parsing and integration. Parsing is
the particular case of integration: the cleaned data from the
acquisition phase are sufficient to be represented in the model.
For example, a message from a sensor device contains not
only the value of measurement but also the relevant metadata
such as the unit of measurement and the date-time of the
measurement. They are enough to be interpreted in the schema.
Integration is when the cleaned data needs to be combined
with other data stored in the system to be interpreted.

[2.3] Storage: The service to store data in different storages.
Two cases are: to store the data into long term storage or short
term cache. Data stored in long term storage is persistent over
time. In contrast, short term data is stored in a temporary cache
for the short term use.

[3.1] Retrieving: The service that retrieves low-level con-
text data stored in the system. This service is called federation
when the retrieved data are from more than one database. It is
called querying when the retrieved data are from one database.

[3.2] Merging: The service that uses aggregation operators
or fusion to combine several types of low-level context data
to produce new low-level context data. This service is called
aggregation in the case that the input is only numerical data.
Aggregation operates calculations such as sum, average, min,
and max. Otherwise, this service is called fusion in the case
that the types of input are heterogeneous. An example is
the fusion of an imagery map representing farmland and the



coordinates of sensor nodes located in the farmland. This
fusion results in a new map with multiple points, of which
each point corresponds to the position of a sensor device.

[3.3] Reasoning: The service that uses reasoning techniques
to produce new high-level context data. Many reasoning
techniques are available in computer science; however, the
two techniques that are considered are inference and pattern
matching. This service is called inference when the system
uses a knowledge base to deduct new data. The knowledge
base comprises a facts base and a set of rules. The facts base
stores low-level and high-level context data of the system.
Rules could be interdependent: some rules can only work
based on the results derived from firing other rules. An
inference made by an inference engine is triggered by the
user or by the schedule of an application. This service is
called pattern matching when the system possesses a set of
patterns. Patterns are defined by domain experts or by users.
The pattern detection engine observes the input and produces
the corresponding output when the input is exactly matching
with the pattern. Different from a rule, a pattern is independent
of other patterns. One pattern itself contains enough data to
produce a decision (high-level context data) from the input.

[3.4] Storage updating: The service that updates the new
data produced after the analysis phase into the storage.

[4.1] Context transformation: The service that the high-
level context data received from the analysis phase is trans-
formed into another format. The two possible actions are
lowering and translation. The service is called lowering when
high-level context data is transformed into low-level context
data. The service is called translation when data is translated
into a human-readable format.

[4.2] User-oriented distribution: The service to provide
information in a human-readable format to users. An example
of the human-readable format is an HTML web page. Two pos-
sible actions of the user-oriented distribution service are noti-
fication and visualization. Notification uses the push model:
as soon as receiving new data from the context transformation
service, a message is sent to the user. Visualization uses the
pull model: when an user’s device requests for information, a
response message is sent to the user.

[4.3] External system distribution: The service to en-
capsulate data from the context transformation service using
networking protocol standards. Then, the encapsulated data
are sent to external systems. The working procedure of this
service depends also on the model of pull or push.

[4.4] Action: The service to control an actuator device. An
actuator can be a simple device such as a open/close water
valve or a complex device as a robotic arm.

[4.5] Reconfiguration: The service to automatically recon-
figure the working schedule of the other services according to
the changes of context.

B. System Design Principles

Each service in the SS-CAS has four related elements as
follows. Figure 3 illustrates these elements and put them in
different layers.

Order of Execution

Software Component

Hardware Component

SERVICE

Business Goal

Legend: 

  Link Non replaceable  Replaceable 

Fig. 3. Four elements of services

• Business goal is the goal of a service, that is, to execute
some activities to transform an input into an expected
output. The business goal of a service always associates
with the service. The name of the service briefly describes
its business goal. For example, the business goal of the
internal data collection service is to collect data from
internal sources such as from sensor devices.

• Order of execution of a service is the information about
which services occur before and after it. This information
is necessary to guarantee the workflow of a system. For
example, the cleaning service occurs after the internal
data collection service. Note that Figure 2 shows not only
the services but also the order of execution.

• Software component is one or several software programs
that run a service to accomplish its business goal. The
software component of a service is replaceable. For
example, the internal data collection service run by an
application built upon Zephyr1 can be replaced by another
application build upon Linux.

• Hardware component is one or several computing de-
vices that run a service to accomplish its business goal.
The hardware component of a service is replaceable.
For example, the internal data collection service run by
an Arduino equipped with a Watermark2 probe can be
replaced by a industrial-grade weather station such as
Vantage Pro 2 equipped with the same Watermark probe.

Before starting the system design, it is necessary to have
a list of system requirements. As usual, this list is the result
of the system specification. Design a CAS using the SS-CAS
includes three steps.

1Zephyr is a real-time operating system for embedded systems.
2Watermark is a soil moisture sensor widely used in agriculture.



1) System developers choose appropriate services in the
SS-CAS based on the list of requirements. It is necessary
to respect the order of execution of the chosen services.

2) System developers use the chosen services to outline
all possibles solutions with their hardware and software
component resources. It depends on the conditions of the
project that the hardware resources or software resources
are considered in the first place.

3) Choose one best solution for the system implementation.
It is necessary to save the other solutions as a backup.

IV. CASE STUDY: SMART IRRIGATION CONTEXT-AWARE
SYSTEM OF TSCF, INRAE

Smart irrigation CAS is a project of TSCF, INRAE. The
smart irrigation CAS automates a manual irrigation method
IRRINOV®specialized for maize [12]. Following this method,
farmers have to do many farming activities manually: (1) they
visit the field; (2) they observe the measured data displayed on
a monitor box; (3) they calculate aggregate data from measured
data; (4) they estimate the state of the crop; (5) they regulate
the irrigation schedule; (6) they cancel an irrigation activity
when it rains [13]. The above activities are sometimes quite
heavy for farmers, for example, in bad weather conditions. The
smart irrigation CAS aims to reduce farmers’ work; moreover,
it helps farmers to use water sparingly. It is composed of three
main modules: (1) an IRRINOV®station is an environment
monitor system including one monitor device equipped with
six Watermark soil moisture sensors, as designed in the
IRRINOV®method; (2) a smart irrigation decision support
system (DSS) suggests irrigation decisions; (3) a web server
produces human-readable information.

The methodology used to develop the smart irrigation CAS
is mini-waterfall combined with Linked Open Terms (LOT)
[14]. After the system specification, system developers have
a list of requirements. In the system design, they follow the
three steps of the SS-CAS.

1) System developers choose 10 services based on the
list of requirements. They are: internal data collection,
cleaning, annotation, storage, retrieving, merging, rea-
soning, storage updating, context transformation, and
user-oriented distribution.

2) Based on the hardware resources available in the project,
which are a work station (server), a Raspberry Pi (gate-
way), and the IRRINOV®station (sensor device), system
developers design two system design solutions: cloud-
oriented and fog-oriented, respectively as in Figure 4 and
Figure 5. In cloud-oriented system design, most of the
services are run by the server. In fog-oriented system
design, most of the services are run by the gateway.
Then, system developers continue to select software
programs corresponding to the services.

3) System developers choose the first design solution since
the gateway in the second solution seems to be over-
loaded. The second design can be used in the future
when the project purchase a high-performance gateway

or system developers can reduce resource usage of the
software programs.

Internal data collection

Context transformation

Sensor Device Gateway Server

User-oriented distribution

Cleaning

Storage
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Reasoning

Annotation
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Merging

Fig. 4. Cloud-oriented system design solution

Internal data collection Context transformation

Sensor Device Gateway Server

User-oriented distributionCleaning Storage

Retrieving

Reasoning

Annotation

Storage Updating

Merging

Fig. 5. Fog-oriented system design solution

V. RELATED WORK

The SS-CAS has some aspects in common with other
system design approaches in terms of (1) grouping activities
into phases, (2) focusing on services, and (3) dividing system
into logical blocks.

First, MAPE-K, an architecture presented by IBM, also
proposes dividing activities of an information system into four
phases: monitoring, analyzing, planning, and executing [15],
[16]. This architecture is for adaptive systems, in other words,
focusing on reconfiguring a system to maintain its robustness
and reliability. However, the SS-CAS provides not only the
reconfiguration service but also other services to interact with
the environment and users. Therefore, it is possible to say that
the SS-CAS includes MAPE-K.

Second, service-oriented architecture (SOA) and microser-
vice are two approaches that also promote designing an
information system as services [17], [18]. Both of them present
principles to define a service in general but ignore the business
goal of each service. Therefore, they have fewer constraints in
comparison with the SS-CAS. In detail, the SS-CAS provides
a list of predefined services and their order of execution to
describe the system’s workflow. With these detail, the SS-CAS
supports better to inexperienced system developers since they
can have an idea of which services are available and how to
organize services in their systems.

Third, the architectures Agri-IoT and SWAMP represent
a system by small logical blocks. Logical blocks in Agri-
IoT are software components. Logical blocks in SWAMP
are Generic Enablers (GE) [19], [20]. However, these two



architectures are different from the SS-CAS in two points.
The first difference is that Agri-IoT and SWAMP distribute
their logical blocks into architectures of multiple layers in
terms of hardware, network, data treatment, and application:
they focus on several aspects of an information system. The
SS-CAS groups services into four phases and it focus on
each service’s business goal. The second difference relates
to the dependence of a logical block. The authors of Agri-
IoT and SWAMP define each of these logical blocks with
a determined type of hardware component and/or a specific
software program, as presented in their publications. However,
hardware and software components related to services in the
SS-CAS are non-predefined.

VI. CONCLUSION

To sum up, this paper presents the SS-CAS, an architecture
composed of 16 services available in CASs. By using the
SS-CAS, system developers focus more on the services and
have more solutions to organize the hardware and software
components of their CAS. The design approach using the SS-
CAS is at an abstract level; therefore, it is open and flexible.
It requires the system developers of each system to further
work on the detail, for example, to design the communication
between services of their CAS. The case study of the irrigation
CAS in TSCF is a practical example of using this design
approach. Note that in the scope of this paper, only a part
of this case study is presented.

This paper has three points needed to discuss further. First,
the SS-CAS is specialized for CASs. A CAS requires the
availability of both low-level and high-level contexts. How-
ever, many other information systems work only with low-
level context. The SS-CAS is inappropriate to these kinds of
information systems. They require another stack of services.

Second, the SS-CAS is formed upon limited sources of
researches and experience. Therefore, it is unable to conclude
that this SS-CAS can cover all CASs in general. It requires
further studies on other domains such as in industry, to
contribute and update the SS-CAS.

Finally, TSCF is actually working on the description of
devices’ affordances and functions using W3C ontologies in
the French ANR CoSWoT project3. This device description
could be used to help the developer to define the business
goal of the services. Thus, it could be interesting to develop
a new method of CAS development based on SS-CAS and
semantic device descriptions in the future.
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